《三角形的面积》教学设计
作为一名无私奉献的老师,通常需要准备好一份教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。那么写教学设计需要注意哪些问题呢?以下是小编精心整理的《三角形的面积》教学设计 ,欢迎大家借鉴与参考,希望对大家有所帮助。
《三角形的面积》教学设计 1教学目标:
1、知识与技能:
(1)探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
(2)培养学生应用已有知识解决新问题的能力。
2、过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点:三角形面积公式的推导过程。
教学关键:让学生经历实际操作、合作交流、归纳发现和抽象公式的过程。
教具准备:红领巾、长方形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备: 每个小组至少准备一个长方形,完全一样的直角三角形、锐角三角形、钝角三角形各两个,剪刀。
教学过程:
一、创设情境,揭示课题
师:今天老师有什么不同?老师今天也配带了红领巾!你们能帮忙算算做一条红领巾要用多少布吗? (把红领巾展开贴在黑板上)
教师提出问题:
⑴红领巾是什么形状的?(三角形)。
⑵你会算三角形的面积吗?
师:这节课我们一起来学习探索三角形面积的计算方法。
板书:三角形的面积
[设计意图:利用学生身上熟悉的红领巾实物,首先由计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,激起了学生的求知欲,从而将“教学活动”转化为“学习活动”。]
二、探索新知
1、寻找思路:(出示一个长方形)
师:(1)长方形面积怎样计算?
(2)怎样可以把这个长方形平均分成两份?
有三种方法:
方法一:方法二: 方法三:
师:方法三中把长方形平均分成两个三角形,大小有什么关系?(完全一样)
每个三角形面积与原长方形的面积有什么关系?
[设计意图:通过把长方形平均分成两个三角形,学生在直观观察的基础上通过建立与长方形及面积的比较,直接感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,引发了深层次的心理动机]
生:长方形的面积=长×宽
生:哪么,剪成的每个直角三角形的面积等于原长方形的面积的一半,三角形的底等于原长方形的长,三角形的高是原长方形的宽,也就是直角三角形的面积等于底乘高除以二。
板书:三角形的面积=底×高÷2(直角三角形)
师:你想,直角三角形的面积可以这样计算,是不是所有的三角形的面积都可以用这种方法去计算呢?今天我们一齐来探讨。上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的。大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?(挂出课本84页主题图让学生观察、引发思考)
接着出示思考题:
(1)将三角形转化成学过的什么图形?
(2)每个三角形与转化后的图形有什么关系?
[设计意图:学生已经学习了平行四边形面积公式的推导过程,启发学生:能不能把三角形也转化成已学过的图形来求它的面积呢?在讲授公式来由之前,以动手把长方形平分成两份的实验,直接引出直角三角形的面积计算方法,做到先入为主的作用,引导学生去猜想。再让学生自己找到新旧知识间的联系,使旧知识为新知识的铺垫。]
2、分组操作、讨论,合作学习。
(1)提出操作和思考要求。
学生用课前准备的三种类型三角形(完全一样的各两个),四人为一小组合作动手拼一拼、摆一摆。
小黑板出示讨论问题:
①用两个完全一样的三角形拼一拼,能拼出什么图形?
②拼出的图形的面积你会计算吗?
③拼出的图形与原来三角形有什么联系?
(2)学生以“四人小组”为单位进行操作和讨论。
[设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形的面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又中从找到对应关系,渗透了对应关系的教学。]
平移
旋转180°
合拼
教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学生:你是怎样拼的?能说一说你的拼法吗?(如果学生操作有困难,教师可以适当引导学生操作:摆出两个完全一样的三角形,把其一个三角形旋转、移动,和另一个三角形拼成一个平行四边形。如图,让学生模仿练习)
[设计意图:让学生找到了新旧知识的连接点与转化方式,使学生正确掌握操作方法,要求学生表述操作过程,规范学生的数学语言,培养学生的口述能力,提高学生的操作技能。]
(3)学生上讲台板演。
①小组汇报实验情况。(让学生将转化后的图形贴在黑板上,然后口述操作过程。)
可能出现以下情况:(用两个完全一样的三角形摆拼)
(两锐角三角形) (两钝角三角形) (两直角三角形)
平行四边形平行四边形长方形
②学生演示:用旋转平移的方法将三角形转化成各种已学过的图形。
师:通过动手操作,你们发现了什么?
引导学生得出:只要是两个完全一样的三角形都可以拼成一个平行四边形。(或长方形)
师:每个三角形的面积与拼成的平行四边形的面积有什么关系?
生:每个三角形的面积是拼成的平行四边形的面积的一半。
生:拼成的平行四边形是每个三角形面积的二倍。(教师给予评价、肯定)
[设计意图:通过动手操作和小组合作学习,再观察演示使同学们更具体、清晰地弄清了将两个完全一样的三角形拼成平行四边形后,它们之间到底有什么关系。让学生通过推导,增强学生探索的兴趣,提高学生推理的能力。]
3、讨论与归纳公式
(1)讨论:(小黑板出示问题)
①、三角形的底和高与平行四边形的底和高有什么关系?
②、怎样求三角形的面积?
③、你能归纳出三角形的面积计算公式吗?
[设计意图:借助图形直观性,教师指明讨论的部分是三角形的底和高与平行四边形的底和高的关系,有助于学生进行推理,加深对三角 ……此处隐藏22803个字……力。
(3)你认识下面的这些道路交通警示标志吗?
向右急转弯 注意危险 减速慢行 注意行人
师:我们学校的上下两个路口在放学时经常交通混乱,为了改变这种状况,交警队准备用铁皮制作四块这样警示牌,你能算出需要多少铁皮吗?(课件)
学生试算
〔设计意图〕这道练习的设计,既巩固了数学知识又自然地渗透了安全教育。
(4)小精灵也给大家带来了问题,请大家看屏幕
师:下图中哪两个三角形的面积相等?你还能画出和它们面积相等的三角形吗?
学生打开书87页,在书中画一画
师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形?
生:无数个
师:通过画这样的三角形,你发现了什么?
生:三角形的面积与底和高有关,与形状无关。
让学生通过思考、讨论、揭示“等底等高的三角形,它们的面积相等”这一规律。
四、总结收获
这节课我们运用转化的思想,通过拼摆把三角形转化成与它等底等高的平行四边形,推导出三角形面积公式,大家还有不明白的地方吗?实际上我们还可以运用剪拼或折叠的方法来推导三角形面积公式(课件演示)课下同学们可以动手试一试。
师:同学们,这节课你最大的收获是什么?
生:我学会了三角形的面积怎样计算。
生:我学会了用转化的方法推导三角形的面积计算公式。
师:下节课我们继续运用转化的思想探究梯形面积的计算方法。
通过反思和总结,能使学生建构的知识框架更加清晰、明了,使学生不仅掌握了知识,而且也掌握了学习方法。
《三角形的面积》教学设计 15教学内容:
《现代小学数学》第九册第31~35页,三角形面积的计算。
教学目标:
一、了解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。
二、能运用三角形面积计算公式进行有关的计算。
三、渗透对立统一的辩证思想。
教学过程:
一、复习引入。
1.准备练习:你会计算这些图形的面积吗?这些图形的面积在计算时,同哪些因素有关?
出示:
2.提问:图(4)是一个什么图形?你会计算它的面积吗?猜一猜,三角形的面积同哪些因素有关?
3.揭题:大家猜得究竟对不对,下面我们就一起来探求“三角形面积的计算”方法。(出示课题)
【设计意图:通过“猜”,引导学生从新旧知识的联系中,大胆地提出假设,为新课展开做好铺垫,同时激发学生急于想验证假设的认知欲望。】
二、新课展开。
(一)实践活动。
1.让学生拿出已准备好的如下一套图形。(同桌合作)
(1)测量各平行四边形(含长方形)的底和高,算出面积,并填入表格内。
(2)找出与平行四边形等底等高的三角形,将相应的编号填入表格内。
(3)分组讨论:
①各三角形的面积是多少?请填入表格内。
②三角形的面积怎样计算?
(4)汇报、交流,初步得出三角形面积计算方法。
【设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又从找对应关系中,渗透了对应关系的教学。】
2.验证。
(1)拿出如右图的三角形,要求剪一刀或两刀,拼成一个与原三角形面积相等的平行四边形。
数学课堂教学参谋
(2)汇报、交流:学生有几种剪拼法,就交流几种。如:
①
6×4÷2 6×(4÷2)
=12(平方厘米) =12(平方厘米)
②
6×4÷2 6÷2×4
=12(平方厘米) =12(平方厘米)
【设计意图:通过验证,培养学生科学的态度,同时从启发学生应用不同的剪拼法中,培养学生的发散思维。】
(二)归纳、小结。
1.从上面的实践活动中,你能说出求三角形面积的计算公式吗?三角形的面积同哪些因素有关?证明“三角形面积=底×高÷2”。(板书:三角形面积=底×高÷2)
2.如果用s表示三角形的面积,a和h分别表示三角形的底和高,那么三角形的面积公式可以怎么写?(板书: s= ah÷2)
(三)应用。
例 一块三角形钢板,底是8米,高是2.5米,它的面积是多少?
学生试做后,反馈、评讲。
【设计意图:通过试做例题,让学生及时把发现的三角形面积计算方法应用于实践,同时起到及时巩固作用。】
三、巩固练习。
(一)基本练习。
1.口算出每个三角形的面积。
①底8米,高7米 ②底5分米,高12分米③a:4厘米,h:2.5厘米 ④a:20分米,h:5.4分米
2.课本35页第②题,看图填写答案。(每一格代表1平方厘米)
这些三角形的高都是____厘米,底都是____厘米。
这些三角形的面积都是:□×□÷2=□(平方厘米)。
3.先量一量,标出图形的长度后,再计算各三角形的面积。
【设计意图:通过三道基本练习,进一步促进全体学生掌握三角形面积的计算方法,尤其是第3道题,使学生进一步明确要求三角形面积,需要知道三角形的底和高。】
(二)分层练习。
a组学生:做选择题。
①求右图面积的算式是( )。
a.9×4÷2 b.15×4÷2
c.15×9÷2 d.15×4
②求右图面积的算式是( )。
a.5.2×3.5÷2
b.5.2×4.1÷2
c.4.1×3.5 d.4.1×3.5÷2
③求下图面积的算式是( )。
a.25×20 b.18×25
c.18×20 d.18×20÷2
b组学生:做课本第15页第
②题:在格子图上画面积都是12平方厘米的三角形(每一小格表示1平方厘米),并在表中分别填上所有三角形的底和高。(图、表见课本。略)
c组学生:先求出下面三个三角形abc、bcd、bce的面积。再比较一下,它们的面积相等吗?为什么?
【设计意图:通过分层练习,使 a、b、c三层的学生在数学思维、数学能力方面均有提高,以体现因材施教的原则。】
四、课堂小结。
这节课研究了哪些内容?三角形面积计算方法是什么,你是怎么研究出来的?
【设计意图:通过提问,不仅回顾了所学知识,而且总结了所研究的方法,真正体现出不仅要授之以“鱼”,更要导之以“渔”。】
五、布置作业。(略)
(此文获“第二届全国小学课堂教学征文大赛”一等奖)